哨兵集群:哨兵挂了,主从库还能切换吗?


上节课,我们学习了哨兵机制,它可以实现主从库的自动切换。通过部署多个实例,就形成了一个哨兵集群。哨兵集群中的多个实例共同判断,可以降低对主库下线的误判率。

但是,我们还是要考虑一个问题:如果有哨兵实例在运行时发生了故障,主从库还能正常切换吗?

实际上,一旦多个实例组成了哨兵集群即使有哨兵实例出现故障挂掉了,其他哨兵还能继续协作完成主从库切换的工作,包括判定主库是不是处于下线状态,选择新主库,以及通知从库和客户端。

如果你部署过哨兵集群的话就会知道,在配置哨兵的信息时,我们只需要用到下面的这个配置项,设置主库的 IP 和端口,并没有配置其他哨兵的连接信息。

1
sentinel monitor <master-name> <ip> <redis-port> <quorum> 

这些哨兵实例既然都不知道彼此的地址,又是怎么组成集群的呢?要弄明白这个问题,我们就需要学习一下哨兵集群的组成和运行机制了。

基于 pub/sub 机制的哨兵集群组成

哨兵实例之间可以相互发现,要归功于 Redis 提供的 pub/sub 机制,也就是发布 / 订阅机制。

哨兵只要和主库建立起了连接,就可以在主库上发布消息了,比如说发布它自己的连接信息(IP 和端口)。同时,它也可以从主库上订阅消息,获得其他哨兵发布的连接信息。当多个哨兵实例都在主库上做了发布和订阅操作后,它们之间就能知道彼此的 IP 地址和端口。

除了哨兵实例,我们自己编写的应用程序也可以通过 Redis 进行消息的发布和订阅。所以,为了区分不同应用的消息,Redis 会以频道的形式,对这些消息进行分门别类的管理。所谓的频道,实际上就是消息的类别。当消息类别相同时,它们就属于同一个频道。反之,就属于不同的频道只有订阅了同一个频道的应用,才能通过发布的消息进行信息交换

在主从集群中,主库上有一个名为“sentinel:hello”的频道,不同哨兵就是通过它来相互发现,实现互相通信的。(怪不得Redis里面会有这样类似消息队列的东西存在,原来是为了配合哨兵机制)

我来举个例子,具体说明一下。在下图中,哨兵 1 把自己的 IP(172.16.19.3)和端口(26579)发布到“sentinel:hello”频道上,哨兵 2 和 3 订阅了该频道。那么此时,哨兵 2 和 3 就可以从这个频道直接获取哨兵 1 的 IP 地址和端口号。

然后,哨兵 2、3 可以和哨兵 1 建立网络连接。通过这个方式,哨兵 2 和 3 也可以建立网络连接,这样一来,哨兵集群就形成了。它们相互间可以通过网络连接进行通信,比如说对主库有没有下线这件事儿进行判断和协商。

img

哨兵除了彼此之间建立起连接形成集群外,还需要和从库建立连接。这是因为,在哨兵的监控任务中,它需要对主从库都进行心跳判断,而且在主从库切换完成后,它还需要通知从库,让它们和新主库进行同步。

那么,哨兵是如何知道从库的 IP 地址和端口的呢?

这是由哨兵向主库发送 INFO 命令来完成的。就像下图所示,哨兵 2 给主库发送 INFO 命令,主库接受到这个命令后,就会把从库列表返回给哨兵。接着,哨兵就可以根据从库列表中的连接信息,和每个从库建立连接,并在这个连接上持续地对从库进行监控。哨兵 1 和 3 可以通过相同的方法和从库建立连接

img

你看,通过 pub/sub 机制,哨兵之间可以组成集群,同时,哨兵又通过 INFO 命令,获得了从库连接信息,也能和从库建立连接,并进行监控了。

但是,哨兵不能只和主、从库连接。因为,主从库切换后,客户端也需要知道新主库的连接信息,才能向新主库发送请求操作。所以,哨兵还需要完成把新主库的信息告诉客户端这个任务。

而且,在实际使用哨兵时,我们有时会遇到这样的问题:如何在客户端通过监控了解哨兵进行主从切换的过程呢?比如说,主从切换进行到哪一步了?这其实就是要求,客户端能够获取到哨兵集群在监控、选主、切换这个过程中发生的各种事件。

此时,我们仍然可以依赖 pub/sub 机制,来帮助我们完成哨兵和客户端间的信息同步。

基于 pub/sub 机制的客户端事件通知

从本质上说,哨兵就是一个运行在特定模式下的 Redis 实例,只不过它并不服务请求操作,只是完成监控、选主和通知的任务。所以,每个哨兵实例也提供 pub/sub 机制,客户端可以从哨兵订阅消息哨兵提供的消息订阅频道有很多,不同频道包含了主从库切换过程中的不同关键事件

频道有这么多,一下子全部学习容易丢失重点。为了减轻你的学习压力,我把重要的频道汇总在了一起,涉及几个关键事件,包括主库下线判断、新主库选定、从库重新配置。

img

知道了这些频道之后,你就可以让客户端从哨兵这里订阅消息了。具体的操作步骤是,客户端读取哨兵的配置文件后,可以获得哨兵的地址和端口,和哨兵建立网络连接。然后,我们可以在客户端执行订阅命令,来获取不同的事件消息。

举个例子,你可以执行如下命令,来订阅“所有实例进入客观下线状态的事件”:

1
SUBSCRIBE +odown

当然,你也可以执行如下命令,订阅所有的事件

1
PSUBSCRIBE  *

当哨兵把新主库选择出来后,客户端就会看到下面的 switch-master 事件。这个事件表示主库已经切换了,新主库的 IP 地址和端口信息已经有了。这个时候,客户端就可以用这里面的新主库地址和端口进行通信了。

1
switch-master <master name> <oldip> <oldport> <newip> <newport>

有了这些事件通知,客户端不仅可以在主从切换后得到新主库的连接信息,还可以监控到主从库切换过程中发生的各个重要事件。这样,客户端就可以知道主从切换进行到哪一步了,有助于了解切换进度。

好了,有了 pub/sub 机制,哨兵和哨兵之间、哨兵和从库之间、哨兵和客户端之间就都能建立起连接了,再加上我们上节课介绍主库下线判断和选主依据,哨兵集群的监控、选主和通知三个任务就基本可以正常工作了。不过,我们还需要考虑一个问题:主库故障以后,哨兵集群有多个实例,那怎么确定由哪个哨兵来进行实际的主从切换呢?

由哪个哨兵执行主从切换?

确定由哪个哨兵执行主从切换的过程,和主库“客观下线”的判断过程类似,也是一个“投票仲裁”的过程。在具体了解这个过程前,我们再来看下,判断“客观下线”的仲裁过程。

哨兵集群要判定主库“客观下线”,需要有一定数量的实例都认为该主库已经“主观下线”了。我在上节课向你介绍了判断“客观下线”的原则,接下来,我介绍下具体的判断过程。

任何一个实例只要自身判断主库“主观下线”后,就会给其他实例发送 is-master-down-by-addr 命令。接着,其他实例会根据自己和主库的连接情况,做出 Y 或 N 的响应,Y 相当于赞成票,N 相当于反对票。

img

一个哨兵获得了仲裁所需的赞成票数后,就可以标记主库为“客观下线”。这个所需的赞成票数是通过哨兵配置文件中的 quorum 配置项设定的。例如,现在有 5 个哨兵,quorum 配置的是 3,那么,一个哨兵需要 3 张赞成票,就可以标记主库为“客观下线”了。这 3 张赞成票包括哨兵自己的一张赞成票和另外两个哨兵的赞成票。

此时,这个哨兵就可以再给其他哨兵发送命令,表明希望由自己来执行主从切换,并让所有其他哨兵进行投票。这个投票过程称为“Leader 选举”。因为最终执行主从切换的哨兵称为 Leader,投票过程就是确定 Leader。

在投票过程中,任何一个想成为 Leader 的哨兵,要满足两个条件:

  • 第一,拿到半数以上的赞成票
  • 第二,拿到的票数同时还需要大于等于哨兵配置文件中的 quorum 值。以 3 个哨兵为例,假设此时的 quorum 设置为 2,那么,任何一个想成为 Leader 的哨兵只要拿到 2 张赞成票,就可以了。

这么说你可能还不太好理解,我再画一张图片,展示一下 3 个哨兵、quorum 为 2 的选举过程。

img

在 T1 时刻,S1 判断主库为“客观下线”,它想成为 Leader,就先给自己投一张赞成票,然后分别向 S2 和 S3 发送命令,表示要成为 Leader。

在 T2 时刻,S3 判断主库为“客观下线”,它也想成为 Leader,所以也先给自己投一张赞成票,再分别向 S1 和 S2 发送命令,表示要成为 Leader。

在 T3 时刻,S1 收到了 S3 的 Leader 投票请求。因为 S1 已经给自己投了一票 Y,所以它不能再给其他哨兵投赞成票了,所以 S1 回复 N 表示不同意。同时,S2 收到了 T2 时 S3 发送的 Leader 投票请求。因为 S2 之前没有投过票,它会给第一个向它发送投票请求的哨兵回复 Y,给后续再发送投票请求的哨兵回复 N,所以,在 T3 时,S2 回复 S3,同意 S3 成为 Leader。

在 T4 时刻,S2 才收到 T1 时 S1 发送的投票命令。因为 S2 已经在 T3 时同意了 S3 的投票请求,此时,S2 给 S1 回复 N,表示不同意 S1 成为 Leader。发生这种情况,是因为 S3 和 S2 之间的网络传输正常,而 S1 和 S2 之间的网络传输可能正好拥塞了,导致投票请求传输慢了。

最后,在 T5 时刻,S1 得到的票数是来自它自己的一票 Y 和来自 S2 的一票 N。而 S3 除了自己的赞成票 Y 以外,还收到了来自 S2 的一票 Y。此时,S3 不仅获得了半数以上的 Leader 赞成票,也达到预设的 quorum 值(quorum 为 2),所以它最终成为了 Leader。接着,S3 会开始执行选主操作,而且在选定新主库后,会给其他从库和客户端通知新主库的信息。

如果 S3 没有拿到 2 票 Y,那么这轮投票就不会产生 Leader。哨兵集群会等待一段时间(也就是哨兵故障转移超时时间的 2 倍),再重新选举。这是因为,哨兵集群能够进行成功投票,很大程度上依赖于选举命令的正常网络传播。如果网络压力较大或有短时堵塞,就可能导致没有一个哨兵能拿到半数以上的赞成票。所以,等到网络拥塞好转之后,再进行投票选举,成功的概率就会增加。

需要注意的是,如果哨兵集群只有 2 个实例,此时,一个哨兵要想成为 Leader,必须获得 2 票,而不是 1 票。所以,如果有个哨兵挂掉了,那么,此时的集群是无法进行主从库切换的。因此,通常我们至少会配置 3 个哨兵实例。这一点很重要,你在实际应用时可不能忽略了。

小结

通常,我们在解决一个系统问题的时候,会引入一个新机制,或者设计一层新功能,就像我们在这两节课学习的内容:为了实现主从切换,我们引入了哨兵;为了避免单个哨兵故障后无法进行主从切换,以及为了减少误判率,又引入了哨兵集群;哨兵集群又需要有一些机制来支撑它的正常运行。

这节课上,我就向你介绍了支持哨兵集群的这些关键机制,包括:

  • 基于 pub/sub 机制的哨兵集群组成过程;
  • 基于 INFO 命令的从库列表,这可以帮助哨兵和从库建立连接;
  • 基于哨兵自身的 pub/sub 功能,这实现了客户端和哨兵之间的事件通知。

对于主从切换,当然不是哪个哨兵想执行就可以执行的,否则就乱套了。所以,这就需要哨兵集群在判断了主库“客观下线”后,经过投票仲裁,选举一个 Leader 出来,由它负责实际的主从切换,即由它来完成新主库的选择以及通知从库与客户端。

最后,我想再给你分享一个经验:要保证所有哨兵实例的配置是一致的,尤其是主观下线的判断值 down-after-milliseconds。我们曾经就踩过一个“坑”。当时,在我们的项目中,因为这个值在不同的哨兵实例上配置不一致,导致哨兵集群一直没有对有故障的主库形成共识,也就没有及时切换主库,最终的结果就是集群服务不稳定。所以,你一定不要忽略这条看似简单的经验。

每课一问

这节课上,我给你提一个小问题。

假设有一个 Redis 集群,是“一主四从”,同时配置了包含 5 个哨兵实例的集群,quorum 值设为 2。在运行过程中,如果有 3 个哨兵实例都发生故障了,此时,Redis 主库如果有故障,还能正确地判断主库“客观下线”吗?如果可以的话,还能进行主从库自动切换吗?此外,哨兵实例是不是越多越好呢,如果同时调大 down-after-milliseconds 值,对减少误判是不是也有好处呢?

Redis 1主4从,5个哨兵,哨兵配置quorum为2,如果3个哨兵故障,当主库宕机时,哨兵能否判断主库“客观下线”?能否自动切换?

经过实际测试,我的结论如下:

  • 1、哨兵集群可以判定主库“主观下线”。由于quorum=2,所以当一个哨兵判断主库“主观下线”后,询问另外一个哨兵后也会得到同样的结果,2个哨兵都判定“主观下线”,达到了quorum的值,因此,哨兵集群可以判定主库为“客观下线”。
  • 2、但哨兵不能完成主从切换。哨兵标记主库“客观下线后”,在选举“哨兵领导者”时,一个哨兵必须拿到超过多数的选票(5/2+1=3票)。但目前只有2个哨兵活着,无论怎么投票,一个哨兵最多只能拿到2票,永远无法达到多数选票的结果。

但是投票选举过程的细节并不是大家认为的:每个哨兵各自1票,这个情况是不一定的。下面具体说一下:

  • 场景a:哨兵A先判定主库“主观下线”,然后马上询问哨兵B(注意,此时哨兵B只是被动接受询问,并没有去询问哨兵A,也就是它还没有进入判定“客观下线”的流程),哨兵B回复主库已“主观下线”,达到quorum=2后哨兵A此时可以判定主库“客观下线”。此时,哨兵A马上可以向其他哨兵发起成为“哨兵领导者”的投票,哨兵B收到投票请求后,由于自己还没有询问哨兵A进入判定“客观下线”的流程,所以哨兵B是可以给哨兵A投票确认的,这样哨兵A就已经拿到2票了。等稍后哨兵B也判定“主观下线”后想成为领导者时,因为它已经给别人投过票了,所以这一轮自己就不能再成为领导者了。
  • 场景b:哨兵A和哨兵B同时判定主库“主观下线”,然后同时询问对方后都得到可以“客观下线”的结论,此时它们各自给自己投上1票后,然后向其他哨兵发起投票请求,但是因为各自都给自己投过票了,因此各自都拒绝了对方的投票请求,这样2个哨兵各自持有1票。

场景a是1个哨兵拿到2票,场景b是2个哨兵各自有1票,这2种情况都不满足大多数选票(3票)的结果,因此无法完成主从切换。

经过测试发现,场景b发生的概率非常小,只有2个哨兵同时进入判定“主观下线”的流程时才可以发生。我测试几次后发现,都是复现的场景a。

哨兵实例是不是越多越好?

并不是,我们也看到了,哨兵在判定“主观下线”和选举“哨兵领导者”时,都需要和其他节点进行通信,交换信息,哨兵实例越多,通信的次数也就越多,而且部署多个哨兵时,会分布在不同机器上,节点越多带来的机器故障风险也会越大,这些问题都会影响到哨兵的通信和选举,出问题时也就意味着选举时间会变长,切换主从的时间变久。

调大down-after-milliseconds值,对减少误判是不是有好处?

是有好处的,适当调大down-after-milliseconds值,当哨兵与主库之间网络存在短时波动时,可以降低误判的概率。但是调大down-after-milliseconds值也意味着主从切换的时间会变长,对业务的影响时间越久,我们需要根据实际场景进行权衡,设置合理的阈值。

参考文章:基础篇 - 08 | 哨兵集群:哨兵挂了,主从库还能切换吗? - 《Redis 读书笔记》 - 极客文档 (geekdaxue.co)


文章作者: zoloy
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 zoloy !
评论
  目录