在第16和第34篇文章中,我分别和你介绍了sort buffer、内存临时表和join buffer。这三个数据结构都是用来存放语句执行过程中的中间数据,以辅助SQL语句的执行的。其中,我们在排序的时候用到了sort buffer,在使用join语句的时候用到了join buffer。
然后,你可能会有这样的疑问,MySQL什么时候会使用内部临时表呢?
今天这篇文章,我就先给你举两个需要用到内部临时表的例子,来看看内部临时表是怎么工作的。然后,我们再来分析,什么情况下会使用内部临时表。
union 执行流程
为了便于量化分析,我用下面的表t1来举例。
1 | create table t1(id int primary key, a int, b int, index(a)); |
然后,我们执行下面这条语句:
1 | (select 1000 as f) union (select id from t1 order by id desc limit 2); |
这条语句用到了union,它的语义是,取这两个子查询结果的并集。并集的意思就是这两个集合加起来,重复的行只保留一行。
下图是这个语句的explain结果。
可以看到:
- 第二行的key=PRIMARY,说明第二个子句用到了索引id。
- 第三行的Extra字段,表示在对子查询的结果集做union的时候,使用了临时表(Using temporary)。
这个语句的执行流程是这样的:
- 创建一个内存临时表,这个临时表只有一个整型字段f,并且f是主键字段。
- 执行第一个子查询,得到1000这个值,并存入临时表中。
- 执行第二个子查询:
- 拿到第一行id=1000,试图插入临时表中。但由于1000这个值已经存在于临时表了,违反了唯一性约束,所以插入失败,然后继续执行;
- 取到第二行id=999,插入临时表成功。
- 从临时表中按行取出数据,返回结果,并删除临时表,结果中包含两行数据分别是1000和999。
这个过程的流程图如下所示:
可以看到,这里的内存临时表起到了暂存数据的作用,而且计算过程还用上了临时表主键id的唯一性约束,实现了union的语义。
顺便提一下,如果把上面这个语句中的union改成union all的话,就没有了“去重”的语义。这样执行的时候,就依次执行子查询,得到的结果直接作为结果集的一部分,发给客户端。因此也就不需要临时表了。
可以看到,第二行的Extra字段显示的是Using index,表示只使用了覆盖索引,没有用临时表了。
group by 执行流程
另外一个常见的使用临时表的例子是group by,我们来看一下这个语句:
1 | select id%10 as m, count(*) as c from t1 group by m; |
这个语句的逻辑是把表t1里的数据,按照 id%10 进行分组统计,并按照m的结果排序后输出。它的explain结果如下:
在Extra字段里面,我们可以看到三个信息:
- Using index,表示这个语句使用了覆盖索引,选择了索引a,不需要回表;
- Using temporary,表示使用了临时表;
- Using filesort,表示需要排序。
这个语句的执行流程是这样的:
- 创建内存临时表,表里有两个字段m和c,主键是m;
- 扫描表t1的索引a,依次取出叶子节点上的id值,计算id%10的结果,记为x;
- 如果临时表中没有主键为x的行,就插入一个记录(x,1);
- 如果表中有主键为x的行,就将x这一行的c值加1;
- 遍历完成后,再根据字段m做排序,得到结果集返回给客户端。
这个流程的执行图如下:
图中最后一步,对内存临时表的排序,在第17篇文章中已经有过介绍,我把图贴过来,方便你回顾。
其中,临时表的排序过程就是图6中虚线框内的过程。
接下来,我们再看一下这条语句的执行结果:
如果你的需求并不需要对结果进行排序,那你可以在SQL语句末尾增加order by null,也就是改成:
1 | select id%10 as m, count(*) as c from t1 group by m order by null; |
这样就跳过了最后排序的阶段,直接从临时表中取数据返回。返回的结果如图8所示。
由于表t1中的id值是从1开始的,因此返回的结果集中第一行是id=1;扫描到id=10的时候才插入m=0这一行,因此结果集里最后一行才是m=0。
这个例子里由于临时表只有10行,内存可以放得下,因此全程只使用了内存临时表。但是,内存临时表的大小是有限制的,参数tmp_table_size就是控制这个内存大小的,默认是16M。
如果我执行下面这个语句序列:
1 | set tmp_table_size=1024; |
把内存临时表的大小限制为最大1024字节,并把语句改成id % 100,这样返回结果里有100行数据。但是,这时的内存临时表大小不够存下这100行数据,也就是说,执行过程中会发现内存临时表大小到达了上限(1024字节)。
那么,这时候就会把内存临时表转成磁盘临时表,磁盘临时表默认使用的引擎是InnoDB。 这时,返回的结果如图9所示。
如果这个表t1的数据量很大,很可能这个查询需要的磁盘临时表就会占用大量的磁盘空间。
group by 优化方法 –索引
可以看到,不论是使用内存临时表还是磁盘临时表,group by逻辑都需要构造一个带唯一索引的表,执行代价都是比较高的。如果表的数据量比较大,上面这个group by语句执行起来就会很慢,我们有什么优化的方法呢?
要解决group by语句的优化问题,你可以先想一下这个问题:执行group by语句为什么需要临时表?
group by的语义逻辑,是统计不同的值出现的个数。但是,由于每一行的id%100的结果是无序的,所以我们就需要有一个临时表,来记录并统计结果。
那么,如果扫描过程中可以保证出现的数据是有序的,是不是就简单了呢?
假设,现在有一个类似图10的这么一个数据结构,我们来看看group by可以怎么做。
可以看到,如果可以确保输入的数据是有序的,那么计算group by的时候,就只需要从左到右,顺序扫描,依次累加。也就是下面这个过程:
- 当碰到第一个1的时候,已经知道累积了X个0,结果集里的第一行就是(0,X);
- 当碰到第一个2的时候,已经知道累积了Y个1,结果集里的第一行就是(1,Y);
按照这个逻辑执行的话,扫描到整个输入的数据结束,就可以拿到group by的结果,不需要临时表,也不需要再额外排序。
你一定想到了,InnoDB的索引,就可以满足这个输入有序的条件。
在MySQL 5.7版本支持了generated column机制,用来实现列数据的关联更新。你可以用下面的方法创建一个列z,然后在z列上创建一个索引(如果是MySQL 5.6及之前的版本,你也可以创建普通列和索引,来解决这个问题)。
1 | alter table t1 add column z int generated always as(id % 100), add index(z); |
看不懂的话,建议看看这个解释:
- **
alter table t1
**:- 这是一个用于修改表结构的命令,指定要修改的表是
t1
。
- 这是一个用于修改表结构的命令,指定要修改的表是
- **
add column z int generated always as (id % 100)
**:- 这部分表示添加一个新列
z
。 z
的数据类型是int
。generated always as (id % 100)
表示z
列是一个计算列,它的值总是根据id
列的值计算得出,即id
对 100 取模的结果。- 也就是说,
z
的值将自动计算并存储为id
除以 100 的余数。
- 这部分表示添加一个新列
- **
add index(z)
**:- 这部分表示为新添加的列
z
创建一个索引。 - 索引可以加快对
z
列的查询速度,尤其是在z
列被用于过滤或排序时。
- 这部分表示为新添加的列
仔细一看的话和这张图差不多了(索引已经排好序了)
这样,索引z上的数据就是类似图10这样有序的了。上面的group by语句就可以改成:
1 | select z, count(*) as c from t1 group by z; |
优化后的group by语句的explain结果,如下图所示:
从Extra字段可以看到,这个语句的执行不再需要临时表,也不需要排序了。
group by优化方法 –直接排序
所以,如果可以通过加索引来完成group by逻辑就再好不过了。但是,如果碰上不适合创建索引的场景,我们还是要老老实实做排序的。那么,这时候的group by要怎么优化呢?
如果我们明明知道,一个group by语句中需要放到临时表上的数据量特别大,却还是要按照“先放到内存临时表,插入一部分数据后,发现内存临时表不够用了再转成磁盘临时表”,看上去就有点儿傻。
那么,我们就会想了,MySQL有没有让我们直接走磁盘临时表的方法呢?
答案是,有的。
在group by语句中加入SQL_BIG_RESULT这个提示(hint),就可以告诉优化器:这个语句涉及的数据量很大,请直接用磁盘临时表。
MySQL的优化器一看,磁盘临时表是B+树存储,存储效率不如数组来得高。所以,既然你告诉我数据量很大,那从磁盘空间考虑,还是直接用数组来存吧。
因此,下面这个语句
1 | select SQL_BIG_RESULT id%100 as m, count(*) as c from t1 group by m; |
的执行流程就是这样的:
- 初始化sort_buffer,确定放入一个整型字段,记为m;
- 扫描表t1的索引a,依次取出里面的id值, 将 id%100的值存入sort_buffer中;
- 扫描完成后,对sort_buffer的字段m做排序(如果sort_buffer内存不够用,就会利用磁盘临时文件辅助排序);
- 排序完成后,就得到了一个有序数组。
根据有序数组,得到数组里面的不同值,以及每个值的出现次数。这一步的逻辑,你已经从前面的图10中了解过了。
下面两张图分别是执行流程图和执行explain命令得到的结果。
从Extra字段可以看到,这个语句的执行没有再使用临时表,而是直接用了排序算法。
基于上面的union、union all和group by语句的执行过程的分析,我们来回答文章开头的问题:MySQL什么时候会使用内部临时表?
- 如果语句执行过程可以一边读数据,一边直接得到结果,是不需要额外内存的,否则就需要额外的内存,来保存中间结果;(在MySQL 5.7版本支持了generated column机制)
- join_buffer是无序数组,sort_buffer是有序数组,临时表是二维表结构;
- 如果执行逻辑需要用到二维表特性,就会优先考虑使用临时表。比如我们的例子中,union需要用到唯一索引约束, group by还需要用到另外一个字段来存累积计数。
小结
通过今天这篇文章,我重点和你讲了group by的几种实现算法,从中可以总结一些使用的指导原则:
- 如果对group by语句的结果没有排序要求,要在语句后面加 order by null;
- 尽量让group by过程用上表的索引,确认方法是explain结果里没有Using temporary 和 Using filesort;
- 如果group by需要统计的数据量不大,尽量只使用内存临时表;也可以通过适当调大tmp_table_size参数,来避免用到磁盘临时表;
- 如果数据量实在太大,使用SQL_BIG_RESULT这个提示,来告诉优化器直接使用排序算法得到group by的结果。
文章中图8和图9都是order by null,为什么图8的返回结果里面,0是在结果集的最后一行,而图9的结果里面,0是在结果集的第一行?
上期问题时间
上期的问题是:为什么不能用rename修改临时表的改名。
在实现上,执行rename table语句的时候,要求按照“库名/表名.frm”的规则去磁盘找文件,但是临时表在磁盘上的frm文件是放在tmpdir目录下的,并且文件名的规则是“#sql{进程id}_{线程id}_序列号.frm”,因此会报“找不到文件名”的错误。