提到数据库索引,我想你并不陌生,在日常工作中会经常接触到。比如某一个SQL查询比较慢,分析完原因之后,你可能就会说“给某个字段加个索引吧”之类的解决方案。但到底什么是索引,索引又是如何工作的呢?今天就让我们一起来聊聊这个话题吧。
数据库索引的内容比较多,我分成了上下两篇文章。索引是数据库系统里面最重要的概念之一,所以希望你能够耐心看完。在后面的实战文章中,我也会经常引用这两篇文章中提到的知识点,加深你对数据库索引的理解。
一句话简单来说,索引的出现其实就是为了提高数据查询的效率,就像书的目录一样。一本500页的书,如果你想快速找到其中的某一个知识点,在不借助目录的情况下,那我估计你可得找一会儿。同样,对于数据库的表而言,索引其实就是它的“目录”。(这个索引还有一个兄弟,叫做倒排索引,是ES中的一个概念)
索引的常见模型
索引的出现是为了提高查询效率,但是实现索引的方式却有很多种,所以这里也就引入了索引模型的概念。可以用于提高读写效率的数据结构很多,这里我先给你介绍三种常见、也比较简单的数据结构,它们分别是哈希表、有序数组和搜索树。
下面我主要从使用的角度,为你简单分析一下这三种模型的区别。
哈希表是一种以键-值(key-value)存储数据的结构,我们只要输入待查找的值即key,就可以找到其对应的值即Value。哈希的思路很简单,把值放在数组里,用一个哈希函数把key换算成一个确定的位置,然后把value放在数组的这个位置。(这里是直接将HashMap的下标当作索引了)
不可避免地,多个key值经过哈希函数的换算,会出现同一个值的情况。处理这种情况的一种方法是,拉出一个链表。(当然在一定的情况下会升级为红黑树)
假设,你现在维护着一个身份证信息和姓名的表,需要根据身份证号查找对应的名字,这时对应的哈希索引的示意图如下所示:
图中,User2和User4根据身份证号算出来的值都是N,但没关系,后面还跟了一个链表。假设,这时候你要查ID_card_n2对应的名字是什么,处理步骤就是:首先,将ID_card_n2通过哈希函数算出N;然后,按顺序遍历,找到User2。
需要注意的是,图中四个ID_card_n的值并不是递增的,这样做的好处是增加新的User时速度会很快,只需要往后追加。但缺点是,因为不是有序的,所以哈希索引做区间查询的速度是很慢的。
你可以设想下,如果你现在要找身份证号在[ID_card_X, ID_card_Y]这个区间的所有用户,就必须全部扫描一遍了。
所以,哈希表这种结构适用于只有等值查询的场景,比如Memcached及其他一些NoSQL引擎。
而有序数组在等值查询和范围查询场景中的性能就都非常优秀。还是上面这个根据身份证号查名字的例子,如果我们使用有序数组来实现的话,示意图如下所示:
这里我们假设身份证号没有重复,这个数组就是按照身份证号递增的顺序保存的。这时候如果你要查ID_card_n2对应的名字,用二分法就可以快速得到,这个时间复杂度是O(log(N))。
同时很显然,这个索引结构支持范围查询。你要查身份证号在[ID_card_X, ID_card_Y]区间的User,可以先用二分法找到ID_card_X(如果不存在ID_card_X,就找到大于ID_card_X的第一个User),然后向右遍历,直到查到第一个大于ID_card_Y的身份证号,退出循环。
如果仅仅看查询效率,有序数组就是最好的数据结构了。但是,在需要更新数据的时候就麻烦了,你往中间插入一个记录就必须得挪动后面所有的记录,成本太高。
所以,有序数组索引只适用于静态存储引擎,比如你要保存的是2017年某个城市的所有人口信息,这类不会再修改的数据。
二叉搜索树也是课本里的经典数据结构了。还是上面根据身份证号查名字的例子,如果我们用二叉搜索树来实现的话,示意图如下所示:
二叉搜索树的特点是:每个节点的左儿子小于父节点,父节点又小于右儿子。这样如果你要查ID_card_n2的话,按照图中的搜索顺序就是按照UserA -> UserC -> UserF -> User2这个路径得到。这个时间复杂度是O(log(N))。
当然为了维持O(log(N))的查询复杂度,你就需要保持这棵树是平衡二叉树。为了做这个保证,更新的时间复杂度也是O(log(N))。
树可以有二叉,也可以有多叉。多叉树就是每个节点有多个儿子,儿子之间的大小保证从左到右递增。二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。其原因是,索引不止存在内存中,还要写到磁盘上。
你可以想象一下一棵100万节点的平衡二叉树,树高20。一次查询可能需要访问20个数据块。在机械硬盘时代,从磁盘随机读一个数据块需要10 ms左右的寻址时间。也就是说,对于一个100万行的表,如果使用二叉树来存储,单独访问一个行可能需要20个10 ms的时间,这个查询可真够慢的。
为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N叉”树。这里,“N叉”树中的“N”取决于数据块的大小。
以InnoDB的一个整数字段索引为例,这个N差不多是1200。这棵树高是4的时候,就可以存1200的3次方个值,这已经17亿了。考虑到树根的数据块总是在内存中的,一个10亿行的表上一个整数字段的索引,查找一个值最多只需要访问3次磁盘。其实,树的第二层也有很大概率在内存中,那么访问磁盘的平均次数就更少了。
N叉树由于在读写上的性能优点,以及适配磁盘的访问模式,已经被广泛应用在数据库引擎中了。
不管是哈希还是有序数组,或者N叉树,它们都是不断迭代、不断优化的产物或者解决方案。数据库技术发展到今天,跳表、LSM树等数据结构也被用于引擎设计中,这里我就不再一一展开了。
这里补充一下关于红黑树,跳表,LSM树的资料:
- b树,b+树,b-树,红黑树详解一锅端 - 你的雷哥 - 博客园 (cnblogs.com)
- 【数据结构】史上最好理解的红黑树讲解,让你彻底搞懂红黑树-CSDN博客
- 【全网最易懂的红黑树讲解】一眼看懂二叉树、平衡树、红黑树,一文打尽-腾讯云开发者社区-腾讯云 (tencent.com)
- Skip List–跳表(全网最详细的跳表文章没有之一) - 简书 (jianshu.com)
- 深入浅出分析LSM树(日志结构合并树) - 知乎 (zhihu.com)
你心里要有个概念,数据库底层存储的核心就是基于这些数据模型的。每碰到一个新数据库,我们需要先关注它的数据模型,这样才能从理论上分析出这个数据库的适用场景(这个说的确实很在理啊,不要一直闷着用,还是要学会分析的)。
截止到这里,我用了半篇文章的篇幅和你介绍了不同的数据结构,以及它们的适用场景,你可能会觉得有些枯燥。但是,我建议你还是要多花一些时间来理解这部分内容,毕竟这是数据库处理数据的核心概念之一,在分析问题的时候会经常用到。当你理解了索引的模型后,就会发现在分析问题的时候会有一个更清晰的视角,体会到引擎设计的精妙之处。
现在,我们一起进入相对偏实战的内容吧。
在MySQL中,索引是在存储引擎层实现的,所以并没有统一的索引标准,即不同存储引擎的索引的工作方式并不一样。(还记得前面存储引擎层实现了undo log的存储吗?)而即使多个存储引擎支持同一种类型的索引,其底层的实现也可能不同。由于InnoDB存储引擎在MySQL数据库中使用最为广泛,所以下面我就以InnoDB为例,和你分析一下其中的索引模型。
InnoDB 的索引模型
在InnoDB中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。又因为前面我们提到的,InnoDB使用了B+树索引模型,所以数据都是存储在B+树中的。
每一个索引在InnoDB里面对应一棵B+树。(想想everything先建立索引,然后再便于我们查找文件就知道了,又或者是ES的倒排索引,索引的目的就是加快查找速度)
假设,我们有一个主键列为ID的表,表中有字段k,并且在k上有索引。
这个表的建表语句是:
1 | mysql> create table T( |
表中R1~R5的(ID,k)值分别为(100,1)、(200,2)、(300,3)、(500,5)和(600,6),两棵树的示例示意图如下。
从图中不难看出,根据叶子节点的内容,索引类型分为主键索引和非主键索引。
- 主键索引的叶子节点存的是整行数据。在InnoDB里,主键索引也被称为聚簇索引(clustered index)。
- 非主键索引的叶子节点内容是主键的值。在InnoDB里,非主键索引也被称为二级索引(secondary index)。
根据上面的索引结构说明,我们来讨论一个问题:基于主键索引和普通索引的查询有什么区别?
- 如果语句是select * from T where ID=500,即主键查询方式,则只需要搜索ID这棵B+树;
- 如果语句是select * from T where k=5,即普通索引查询方式,则需要先搜索k索引树,得到ID的值为500,再到ID索引树搜索一次。这个过程称为回表。
也就是说,基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询。
索引维护
B+树为了维护索引有序性,在插入新值的时候需要做必要的维护。以上面这个图为例,如果插入新的行ID值为700,则只需要在R5的记录后面插入一个新记录。如果新插入的ID值为400,就相对麻烦了,需要逻辑上挪动后面的数据,空出位置。
而更糟的情况是,如果R5所在的数据页已经满了,根据B+树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去。这个过程称为页分裂。在这种情况下,性能自然会受影响。
建议先看看这几篇博客
Mysql基础(八):表空间、段、区、页的关系_mysql 段 区 页-CSDN博客
总结
表空间表示一本书,段表示书中的章节,区表示每章节的小节,页表示书的每一页,行就是每页的每行数据。表空间里有多个段,一个段包含256个区,一个区包含64个页,一个页为16K。
这个总结还可以
一看就懂的:MySQL数据页以及页分裂机制 - 赐我白日梦 - 博客园 (cnblogs.com)
数据页长这样,可以对比上面的图看一下
-
上面就是数据页的结构了,首先两个数据页之间会有指针指向上一个和下一个数据页,形成一个双向链表,在数据页中存储的就是一行行的数据了,每个数据行之间会有单向指针连接,组成一个单向链表
我们还可以看到图中有一些数字,这些代表的是这行数据行的类型,第一行的行类型是2,就说明这一行是起始行,代表最小的一行,指针指向了下一行的数据;接下来的数据行的行类型是0,也就是普通的数据行,里面存储了各种字段;最后一行的行类型是3,代表了最大的一行
当一个数据页中的数据行太多放不下的下,就会生成一个新的数据页来存储,同时使用双向链表来相连
结论就是主键值最好是有序的,这样就可以不用页分裂,还能充分使用到索引,否则就必须进行页分裂来保证索引的使用
Innodb页合并和页分裂-腾讯云开发者社区-腾讯云 (tencent.com)
记住InnoDB不能以单行基础上工作是非常重要的。InnoDB总是在页上操作。一旦页被加载,它就会扫描页以寻找所请求的行/记录。
删除之后页合并(50%),插入新数据页分裂(不能乱序插入)。
还记得我们说过的链表吗?此时第10页之前的页为第9页,之后的页为第11页。
第11页保持原样。改变的是页之间的关系:
- 第10页之前的页为第9页,之后的页为第12页
- 第12页之前的页为第10页,之后的页是第11页
- 第11页之前的页为第12页,之后的页为第13页
9 –> 10 –>12 –> 11 –>13
大概就是执行了这个操作
InnoDB做的是(简化版):
- 创建一个新页。
- 确定原始页(第10页)可以在哪里拆分(在记录级别)
- 移动记录
- 重新定义页之间关系
这里讲的还可以,提取出来了:
当心批量插入失败或者回滚时带来的MySQL表碎片
通常,DBA都了解使用DELETE语句会产生表碎片。在大多数情况下,当执行大量的删除时,DBA总会重新构建表以回收磁盘空间。但是,您是否认为只有删除才会导致表碎片?(答案:并不是)。
在这篇博文中,我将解释插入如何会带来碎片。
在讨论这个主题之前,我们需要了解MySQL,有两种碎片:
- 在表中的InnoDB页完全空闲引起的碎片。
- InnoDB页未填充满(页中还有一些空闲空间)引起的碎片。
主要有三种由插入引起的碎片场景:
- 插入之后回滚会产生碎片
- 插入语句失败会产生碎片
- 页分裂引起的碎片
这篇讲的比前几篇详细一点,建议仔细看看
除了性能外,页分裂操作还影响数据页的利用率。原本放在一个页的数据,现在分到两个页中,整体空间利用率降低大约50%。
当然有分裂就有合并。当相邻两个页由于删除了数据,利用率很低之后,会将数据页做合并。合并的过程,可以认为是分裂过程的逆过程。
基于上面的索引维护过程说明,我们来讨论一个案例:
你可能在一些建表规范里面见到过类似的描述,要求建表语句里一定要有自增主键。当然事无绝对,我们来分析一下哪些场景下应该使用自增主键,而哪些场景下不应该。
自增主键是指自增列上定义的主键,在建表语句中一般是这么定义的: NOT NULL PRIMARY KEY AUTO_INCREMENT。
插入新记录的时候可以不指定ID的值,系统会获取当前ID最大值加1作为下一条记录的ID值。
也就是说,自增主键的插入数据模式,正符合了我们前面提到的递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。
而有业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高。
除了考虑性能外,我们还可以从存储空间的角度来看。假设你的表中确实有一个唯一字段,比如字符串类型的身份证号,那应该用身份证号做主键,还是用自增字段做主键呢?
由于每个非主键索引的叶子节点上都是主键的值。如果用身份证号做主键,那么每个二级索引的叶子节点占用约20个字节,而如果用整型做主键,则只要4个字节,如果是长整型(bigint)则是8个字节。
显然,主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。
所以,从性能和存储空间方面考量,自增主键往往是更合理的选择。
有没有什么场景适合用业务字段直接做主键的呢?还是有的。比如,有些业务的场景需求是这样的:
- 只有一个索引;
- 该索引必须是唯一索引。
你一定看出来了,这就是典型的KV场景。(这下看懂了)
由于没有其他索引,所以也就不用考虑其他索引的叶子节点大小的问题。
这时候我们就要优先考虑上一段提到的“尽量使用主键查询”原则,直接将这个索引设置为主键,可以避免每次查询需要搜索两棵树。
小结
今天分析了数据库引擎可用的数据结构,介绍了InnoDB采用的B+树结构,以及为什么InnoDB要这么选择。B+树能够很好地配合磁盘的读写特性,减少单次查询的磁盘访问次数。
由于InnoDB是索引组织表,一般情况下我会建议你创建一个自增主键,这样非主键索引占用的空间最小。但事无绝对,我也跟你讨论了使用业务逻辑字段做主键的应用场景。
对于上面例子中的InnoDB表T,如果你要重建索引 k,你的两个SQL语句可以这么写:
1 | alter table T drop index k; |
如果你要重建主键索引,也可以这么写:
1 | alter table T drop primary key; |
我的问题是,对于上面这两个重建索引的作法,说出你的理解。如果有不合适的,为什么,更好的方法是什么?
上期问题时间
如何避免长事务对业务的影响?
这个问题,我们可以从应用开发端和数据库端来看。
首先,从应用开发端来看:
- 确认是否使用了set autocommit=0。这个确认工作可以在测试环境中开展,把MySQL的general_log开起来,然后随便跑一个业务逻辑,通过general_log的日志来确认。一般框架如果会设置这个值,也就会提供参数来控制行为,你的目标就是把它改成1。
- 确认是否有不必要的只读事务。有些框架会习惯不管什么语句先用begin/commit框起来。我见过有些是业务并没有这个需要,但是也把好几个select语句放到了事务中。这种只读事务可以去掉。
- 业务连接数据库的时候,根据业务本身的预估,通过SET MAX_EXECUTION_TIME命令,来控制每个语句执行的最长时间,避免单个语句意外执行太长时间。(为什么会意外?在后续的文章中会提到这类案例)
其次,从数据库端来看:(这后面实战味道太浓了,没用过先跳过咯)
- 监控 information_schema.Innodb_trx表,设置长事务阈值,超过就报警/或者kill;
- Percona的pt-kill这个工具不错,推荐使用;
- 在业务功能测试阶段要求输出所有的general_log,分析日志行为提前发现问题;
- 如果使用的是MySQL 5.6或者更新版本,把innodb_undo_tablespaces设置成2(或更大的值)。如果真的出现大事务导致回滚段过大,这样设置后清理起来更方便。